These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inwardly rectifying K(+) channels in esophageal smooth muscle.
    Author: Ji J, Salapatek AM, Diamant NE.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2000 Nov; 279(5):G951-60. PubMed ID: 11052992.
    Abstract:
    The whole cell patch-clamp technique was used to investigate whether there were inwardly rectifying K(+) (K(ir)) channels in the longitudinal muscle of cat esophagus. Inward currents were observable on membrane hyperpolarization negative to the K(+) equilibrium potential (E(k)) in freshly isolated esophageal longitudinal muscle cells. The current-voltage relationship exhibited strong inward rectification with a reversal potential (E(rev)) of -76.5 mV. Elevation of external K(+) increased the inward current amplitude and positively shifted its E(rev) after the E(k), suggesting that potassium ions carry this current. External Ba(2+) and Cs(+) inhibited this inward current, with hyperpolarization remarkably increasing the inhibition. The IC(50) for Ba(2+) and Cs(+) at -60 mV was 2.9 and 1.6 mM, respectively. Furthermore, external Ba(2+) of 10 microM moderately depolarized the resting membrane potential of the longitudinal muscle cells by 6.3 mV while inhibiting the inward rectification. We conclude that K(ir) channels are present in the longitudinal muscle of cat esophagus, where they contribute to its resting membrane potential.
    [Abstract] [Full Text] [Related] [New Search]