These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A high-Na(+) conduction state during recovery from inactivation in the K(+) channel Kv1.5. Author: Wang Z, Hesketh JC, Fedida D. Journal: Biophys J; 2000 Nov; 79(5):2416-33. PubMed ID: 11053120. Abstract: Na(+) conductance through cloned K(+) channels has previously allowed characterization of inactivation and K(+) binding within the pore, and here we have used Na(+) permeation to study recovery from C-type inactivation in human Kv1.5 channels. Replacing K(+) in the solutions with Na(+) allows complete Kv1.5 inactivation and alters the recovery. The inactivated state is nonconducting for K(+) but has a Na(+) conductance of 13% of the open state. During recovery, inactivated channels progress to a higher Na(+) conductance state (R) in a voltage-dependent manner before deactivating to closed-inactivated states. Channels finally recover from inactivation in the closed configuration. In the R state channels can be reactivated and exhibit supernormal Na(+) currents with a slow biexponential inactivation. Results suggest two pathways for entry to the inactivated state and a pore conformation, perhaps with a higher Na(+) affinity than the open state. The rate of recovery from inactivation is modulated by Na(+)(o) such that 135 mM Na(+)(o) promotes the recovery to normal closed, rather than closed-inactivated states. A kinetic model of recovery that assumes a highly Na(+)-permeable state and deactivation to closed-inactivated and normal closed states at negative voltages can account for the results. Thus these data offer insight into how Kv1. 5 channels recover their resting conformation after inactivation and how ionic conditions can modify recovery rates and pathways.[Abstract] [Full Text] [Related] [New Search]