These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arginine side-chain dynamics in the HIV-1 rev-RRE complex.
    Author: Wilkinson TA, Botuyan MV, Kaplan BE, Rossi JJ, Chen Y.
    Journal: J Mol Biol; 2000 Nov 03; 303(4):515-29. PubMed ID: 11054288.
    Abstract:
    The binding of human immunodeficiency virus type 1 (HIV-1) Rev protein to its viral RNA target, stem-loop IIB (SLIIB) within the Rev Response element (RRE), mediates the export of singly-spliced and unspliced viral mRNA from the nucleus to the cytoplasm of infected cells; this Rev-mediated transport of viral RNA is absolutely required for the replication of infectious virus. To identify important features that influence the binding affinity and specificity of this Rev-RRE interaction, we have characterized the arginine side-chain dynamics of the Rev arginine-rich motif (ARM) while bound to a 34 nt RNA oligomer that corresponds to SLIIB. As the specificity of the Rev-RRE interaction varies with salt concentration, arginine side-chain dynamics were characterized at two different salt conditions. Following NMR measurements of (15)N spin relaxation parameters for the arginine (15)N(epsilon) nuclei, the dynamics of the corresponding N(epsilon)-H(epsilon) bond vectors were interpreted in terms of Lipari-Szabo model-free parameters using anisotropic expressions for the spectral density functions. Results from these analyses indicate that a number of arginine side-chains display a surprising degree of conformational freedom when bound to RNA, and that arginine residues having known importance for specific RRE recognition show striking differences in side-chain mobility. The (15)N relaxation measurements at different salt conditions suggest that the previously reported increase in Rev-RRE specificity at elevated salt concentrations is likely due to reduced affinity of non-specific Rev-RNA interactions. The observed dynamical behavior of the arginine side-chains at this protein-RNA interface likely plays an important role in the specificity and affinity of Rev-SLIIB complex formation.
    [Abstract] [Full Text] [Related] [New Search]