These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional role of Ca(2+)-binding site IV of scallop troponin C. Author: Ojima T, Koizumi N, Ueyama K, Inoue A, Nishita K. Journal: J Biochem; 2000 Nov; 128(5):803-9. PubMed ID: 11056393. Abstract: Scallop troponin C (TnC) binds only one Ca(2+)/mol and the single Ca(2+)-binding site has been suggested to be site IV on the basis of the primary structure [K. Nishita, H. Tanaka, and T. Ojima (1994) J. Biol. Chem. 269, 3464-3468; T. Ojima, H. Tanaka, and K. Nishita (1994) Arch. Biochem. Biophys. 311, 272-276]. In the present study, the functional role of Ca(2+)-binding site IV of akazara scallop (Chlamys nipponensis akazara) TnC in Ca(2+)-regulation was investigated using a site-directed mutant with an inactivated site IV (TnC-ZEQ), N- and C-terminal half molecule mutants (TnC(N) and TnC(C)), and wild-type TnC (TnC(W)). Equilibrium dialysis using (45)Ca(2+) demonstrated that TnC(W) and TnC(C) bind 0.6-0.8 mol of Ca(2+)/mol, but that TnC-ZEQ and TnC(N) bind virtually no Ca(2+). The UV difference spectra of TnC(W) and TnC(C) showed bands at around 280-290 nm due to the perturbation of Tyr and Trp upon Ca(2+)-binding, while TnC-ZEQ and TnC(N) did not show these bands. In addition, TnC(W) and TnC(C) showed retardation of elution from Sephacryl S-200 upon the addition of 1 mM CaCl(2), unlike TnC-ZEQ and TnC(N). These results indicate that Ca(2+) binds only to site IV and that Ca(2+)-binding causes structural changes in both the whole TnC molecule and the C-terminal half molecule. In addition, TnC(W), TnC-ZEQ, and TnC(C), but not TnC(N), were shown to form soluble complexes with scallop TnI at physiological ionic strength. On the other hand, the Mg-ATPase activity of reconstituted rabbit actomyosin in the presence of scallop tropomyosin was inhibited by scallop TnI and recovered by the addition of an equimolar amount of TnC(W), TnC-ZEQ, or TnC(C), but not TnC(N). These results imply that the site responsible for the association with TnI is located in the C-terminal half domain of TnC. Ternary complex constructed from scallop TnT, TnI, and TnC(W) conferred Ca(2+)-sensitivity to the Mg-ATPase of rabbit actomyosin to the same extent as native troponin, but the TnC(N)-TnT-TnI and TnC-ZEQ-TnT-TnI complexes conferred no Ca(2+)-sensitivity, while the TnC(C)-TnT-TnI complex conferred weak Ca(2+)-sensitivity. Thus, the major functions of scallop TnC, such as Ca(2+)-binding and interaction with TnI, are located in the C-terminal domain, however, the full Ca(2+)-regulatory function requires the presence of the N-terminal domain.[Abstract] [Full Text] [Related] [New Search]