These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coronary sinus flow measurement by means of velocity-encoded cine MR imaging: validation by using flow probes in dogs. Author: Lund GK, Wendland MF, Shimakawa A, Arheden H, Ståhlberg F, Higgins CB, Saeed M. Journal: Radiology; 2000 Nov; 217(2):487-93. PubMed ID: 11058650. Abstract: PURPOSE: To validate coronary sinus flow measurements for quantification of global left ventricular (LV) perfusion by means of velocity-encoded cine (VEC) magnetic resonance (MR) imaging and flow probes. MATERIALS AND METHODS: Measurements of coronary sinus flow were performed in seven dogs by using VEC MR imaging at baseline, single coronary arterial stenosis, dipyridamole stress, and reactive hyperemia. These measurements were compared with flow probe measurements of coronary blood flow (CBF) in the left anterior descending coronary (LAD) and circumflex (CFX) arteries (CBF(LAD+CFX)) and coronary sinus. LV blood perfusion was calculated in milliliters per minute per gram from coronary sinus flow, and LV mass was obtained by using VEC and cine MR imaging. LV mass was validated at autopsy. RESULTS: CBF(LAD+CFX) and coronary sinus flow at VEC MR imaging showed close correlation (r = 0.98, P: <.001). The difference between CBF(LAD+CFX) and MR coronary sinus flow was 3.1 mL/min +/- 8.5 (SD). LV mass at cine MR imaging was not significantly different from that at autopsy (73.2 g +/- 12.8 vs 69. 4 g +/- 12.8). At baseline, myocardial perfusion was 0.40 mL/min/g +/- 0.09 at VEC MR imaging, and CBF(LAD+CFX) was 0.44 mL/min/g +/- 0. 08 (not significant). Reactive hyperemia resulted in 2.7- and 2. 3-fold increases in coronary sinus flow at VEC MR imaging and flow probe CBF(LAD+CFX), respectively. CONCLUSION: VEC MR imaging has the potential to measure coronary sinus flow during different physiologic conditions and can serve as a noninvasive modality to quantify global LV perfusion in patients.[Abstract] [Full Text] [Related] [New Search]