These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Parenteral antibiotic therapy in the treatment of lower respiratory tract infections. Strategies to minimize the development of antibiotic resistance. Author: Cazzola M, Matera MG, Noschese P. Journal: Pulm Pharmacol Ther; 2000; 13(6):249-56. PubMed ID: 11061979. Abstract: Antibiotic use is often imputed for increases in the prevalence of infections due to antibiotic-resistant bacteria. Resistance depends on the variety of genotypes in the large bacterial population and also on the selective pressures that are produced along the antibiotic concentration gradients in the body. In effect, at certain selective concentrations the antibiotic eliminates the susceptible majority, leaving a selected remainder intact. Therefore, the choice of antibiotics for the treatment of lower respiratory tract infections should take into consideration not only their effectiveness but also the pharmacokinetics of each agent and its delivery schedule. In fact, the potential therapeutic efficacy of an antibiotic depends not only on its spectrum of action, but also on the concentration it reaches at the site of infection. Most infections occur in the tissues of the body rather than in the blood and that it is accepted that appropriate antibiotic therapy requires the maintenance of significant concentrations of antibiotics at the site of infection in the lung long enough to eliminate the invading pathogen. Thus, the development of dosing schedules for most antimicrobials has been based on the postulate that drug levels need to be above the minimal inhibitory concentration (MIC) at this site for most or all the dosing interval. The selection of antimicrobial resistance appears to be strongly associated with suboptimal antimicrobial exposure, defined as an AUIC(0-24)/MIC ratio of less than 100O125. Antimicrobial regimens that do not achieve these values cannot prevent the selective pressure that leads to overgrowth of resistant bacterial subpopulations. It has been suggested that resistance can be avoided with attention to dosing, since dosing which provides an AUIC(0-24)/MIC ratio of at least 100 appears to reduce the rate of the development of bacterial resistance. Unfortunately, very different serum or lung concentration profiles can result in the same AUIC(0-24)/MIC. High doses administered sufficiently may often completely prevent any possibility of attaining a selective concentration. Alternatively, an antibiotic which has good bactericidal potency and maintains tissue and/or serum concentrations greater than the MIC or, better, minimal bactericidal concentration (MBC) throughout the dosing interval is equally effective in minimizing the development of antibiotic resistance.[Abstract] [Full Text] [Related] [New Search]