These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum.
    Author: Strömberg I, Popoli P, Müller CE, Ferré S, Fuxe K.
    Journal: Eur J Neurosci; 2000 Nov; 12(11):4033-7. PubMed ID: 11069599.
    Abstract:
    It has been shown that striatal adenosine A2A receptors can antagonistically interact with dopamine D2 receptors at the membrane level leading to a decrease in the affinity and efficacy of D2 receptors. Extracellular recordings and rotational behaviour were employed to obtain a correlate to these findings in an animal model of Parkinson's disease (PD). The recordings were performed in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced catecholamine depletion. While recording in the dopamine-depleted striatum, local applications of the dopamine D2 agonist quinpirole reduced neuronal activity. However, when the adenosine A2A antagonist MSX-3 was applied simultaneously with quinpirole, the inhibition of neuronal firing seen after quinpirole alone was significantly potentiated (P< 0.001, n = 11). In contrast, local application of CGS 21680 attenuated the effect of quinpirole. The doses of MSX-3 and CGS 21680 used to achieve the modulation of quinpirole action had no effect per se on striatal neuronal firing. Furthermore, rotational behaviour revealed that MSX-3 dose-dependently increased the number of turns when administrated together with a threshold dose of quinpirole while no enhancement was achieved when MSX-3 was combined with SKF 38393. MSX-3 alone did not induce rotational behaviour. In conclusion, this study shows that low ineffective doses of MSX-3 enhance the effect of quinpirole on striatal firing rate, while the A2A agonist exerts the opposite action. This mechanism gives a therapeutic potential to A2A antagonists in the treatment of PD by enhancing D2 receptor function.
    [Abstract] [Full Text] [Related] [New Search]