These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unique features of the basal cells of human prostate epithelium.
    Author: El-Alfy M, Pelletier G, Hermo LS, Labrie F.
    Journal: Microsc Res Tech; 2000 Dec 01; 51(5):436-46. PubMed ID: 11074614.
    Abstract:
    The prostate gland is globally composed of epithelium and stroma. The epithelium plays an important role in the development of both benign and malignant disorders while the stroma is involved in benign prostatic hyperplasia. While the prostatic epithelium of the majority of laboratory animals is well recognized as a pseudostratified columnar, the classification of the human prostatic epithelium is controversial. Moreover, the role of the basal cells of the human prostatic epithelium is still uncertain. These cells have been described as undifferentiated cells, precursors of luminal cells, reserve and myoepithelial cells. The objective of the present study was to assess the similarities and/or differences between the epithelium of the human prostate and that of other laboratory animals and thus derive information about the potential functions of basal cells in the human prostate. In the human, basal cells form a continuous layer of cells resting on the basement membrane and upon which rests a layer of luminal cells. This results in a stratified columnar epithelium of two layers of cells, unlike the sporadic appearance of basal cells observed in other species where it results in a pseudostratified epithelium. In addition, the ratio of basal to luminal cells in the human is about 1:1, while the average ratio in the other animal species examined is about 1:7. Furthermore, the gap junctional proteins connexin 26 and 43, are present between basal and luminal cells in the human, thus suggesting that these cells communicate directly with each other. In addition, the ultrastructure of the human basal cells shows morphological evidence of differentiated but not of undifferentiated cells. Moreover, the presence of junction-like structures between adjacent basal cells suggests that these cells form a blood-prostate barrier. In this way, basal cells could prevent substances derived from the blood from directly coming in contact with the luminal cells. Human basal cells could thus regulate functions of the luminal cells by being part of a two-cell mechanism somewhat analogous to thecal and granulosa cells in the ovary.
    [Abstract] [Full Text] [Related] [New Search]