These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Function of N-terminal transactivation domain of the estrogen receptor requires a potential alpha-helical structure and is negatively regulated by the A domain. Author: Métivier R, Petit FG, Valotaire Y, Pakdel F. Journal: Mol Endocrinol; 2000 Nov; 14(11):1849-71. PubMed ID: 11075817. Abstract: Transcriptional activation by the estrogen receptor (NR3A1, or ER) requires specific ligand-inducible activation functions located in the amino (AF-1) and the carboxyl (AF-2 and AF-2a) regions of the protein. Although several detailed reports of ER structure and function describe mechanisms whereby AF-2 activates transcription, less precise data exist for AF-1. We recently reported that the rainbow trout and human estrogen receptors (rtERs and hERs, respectively), two evolutionary distant proteins, exhibit comparable AF-1 activities while sharing only 20% homology in their N-terminal region. These data suggested that the basic mechanisms whereby AF-1 and the ER N-terminal region activate transactivation might be evolutionary conserved. Therefore, a comparative approach between rtER and hER could provide more detailed information on AF-1 function. Transactivation analysis of truncated receptors and Gal4DBD (DNA binding domain of the Gal4 factor) fusion proteins in Saccharomyces cerevisiae defined a minimal region of 11 amino acids, located at the beginning of the B domain, necessary for AF-1 activity in rtER. Hydrophobic cluster analysis (HCA) indicated the presence of a potential alpha-helix within this minimal region that is conserved during evolution. Both rtER and hER sequences corresponding to this potential alpha-helical structure were able to induce transcription when fused to the Gal4DBD, indicating that this region can transactivate in an autonomous manner. Furthermore, point mutations in this 11-amino acid region of the receptors markedly reduced their transcriptional activity either within the context of a whole ER or a Gal4DBD fusion protein. Data were confirmed in mammalian cells and, interestingly, ERs with an inverted alpha-helix were as active as their corresponding wild-type proteins, indicating a conserved role in AF-1 for these structures. Moreover, using two naturally occurring rtER N-terminal variants possessing or not the A domain (rtER(L) and rtER(S), respectively), together with A domain-truncated hER and chimeric rtER/hER receptors, we demonstrated that the A domain of the ER plays an inhibitory role in ligand-independent activity of the receptor. In vitro and in vivo protein-protein interaction assays using both rtER and hER demonstrated that this repression is likely to be mediated by a ligand-sensitive direct interaction between the A domain and the C-terminal region of the ER.[Abstract] [Full Text] [Related] [New Search]