These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Toxicokinetics of inhaled propylene in mouse, rat, and human.
    Author: Filser JG, Schmidbauer R, Rampf F, Baur CM, Pütz C, Csanády GA.
    Journal: Toxicol Appl Pharmacol; 2000 Nov 15; 169(1):40-51. PubMed ID: 11076695.
    Abstract:
    A physiological toxicokinetic (PT) model was developed for inhaled propylene gas (PE) in mouse, rat, and human. Metabolism was simulated to occur in the liver (90%) and in the richly perfused tissue group (10%). The partition coefficients tissue:air were determined in vitro using tissues of mice, rats, and humans. Most of the tissues have partition coefficients of around 0.5. Only adipose tissue displays a 10 times higher value. The partition coefficient blood:air in human is 0.44, about half of that in rodents. PE can accumulate in the organism only barely. For male B6C3F1 mice and male Fischer 344/N rats, parameters of PE metabolism were obtained from gas uptake experiments. Maximum rates of metabolism (V(maxmo)) were 110 micromol/h/kg in mice and 50.4 micromol/h/kg in rats. V(maxmo)/2 was reached in mice at 270 ppm and in rats at 400 ppm of atmospheric PE. Pretreatment of the animals with sodium diethyldithiocarbamate resulted in an almost complete inhibition of PE metabolism in both species. Preliminary toxicokinetic data on PE metabolism in humans were obtained in one volunteer who was exposed up to 4.5 h to constant concentrations of 5 and 25 ppm PE. The PT model was used to calculate PE blood concentrations at steady state. At 25 ppm, the blood values were comparable across species, with 0.19, 0.32, and 0.34 micromol/L for mouse, rat, and human, respectively. However, the corresponding rates of PE metabolism differed dramatically, being 8.3, 2.1, and 0.29 micromol/h/kg in mouse, rat, and human. For a repeated human exposure to 25 ppm PE in air (8 h/day, 5 days/week), PE concentrations in venous blood were simulated. The prediction demonstrates that PE is eliminated so rapidly that it cannot accumulate in the organism. For low exposure concentrations, it became obvious that the rate of uptake into blood by inhalation is limited by the blood flow through the lung and the rate of metabolism is limited by the blood flow through the metabolizing organs.
    [Abstract] [Full Text] [Related] [New Search]