These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of Na(+)-K(+)-Cl(-) cotransporter in primary astrocytes by dibutyryl cAMP and high [K(+)](o).
    Author: Su G, Haworth RA, Dempsey RJ, Sun D.
    Journal: Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1710-21. PubMed ID: 11078685.
    Abstract:
    In this study, we examined the Na(+)-K(+)-Cl(-) cotransporter activity and expression in rat cortical astrocyte differentiation. Astrocyte differentiation was induced by dibutyryl cAMP (DBcAMP, 0. 25 mM) for 7 days, and cells changed from a polygonal to process-bearing morphology. Basal activity of the cotransporter was significantly increased in DBcAMP-treated astrocytes (P < 0.05). Expression of an approximately 161-kDa cotransporter protein was increased by 91% in the DBcAMP-treated astrocytes. Moreover, the specific [(3)H]bumetanide binding was increased by 67% in the DBcAMP-treated astrocytes. Inhibition of protein synthesis by cyclohexamide (2-3 microgram/ml) significantly attenuated the DBcAMP-mediated upregulation of the cotransporter activity and expression. The Na(+)-K(+)-Cl(-) cotransporter in astrocytes has been suggested to play a role in K(+) uptake. In 75 mM extracellular K(+) concentration, the cotransporter-mediated K(+) influx was stimulated by 147% in nontreated cells and 79% in DBcAMP-treated cells (P < 0.05). To study whether this high K(+)-induced stimulation of the cotransporter is attributed to membrane depolarization and Ca(2+) influx, the role of the L-type voltage-dependent Ca(2+) channel was investigated. The high-K(+)-mediated stimulation of the cotransporter activity was abolished in the presence of either 0.5 or 1.0 microM of the L-type channel blocker nifedipine or Ca(2+)-free HEPES buffer. A rise in intracellular free Ca(2+) in astrocytes was observed in high K(+). These results provide the first evidence that the Na(+)-K(+)-Cl(-) cotransporter protein expression can be regulated selectively when intracellular cAMP is elevated. The study also demonstrates that the cotransporter in astrocytes is stimulated by high K(+) in a Ca(2+)-dependent manner.
    [Abstract] [Full Text] [Related] [New Search]