These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Serine phosphorylation of p60 tumor necrosis factor receptor by PKC-delta in TNF-alpha-activated neutrophils. Author: Kilpatrick LE, Song YH, Rossi MW, Korchak HM. Journal: Am J Physiol Cell Physiol; 2000 Dec; 279(6):C2011-8. PubMed ID: 11078718. Abstract: Tumor necrosis factor-alpha (TNF-alpha) triggers degranulation and oxygen radical release in adherent neutrophils. The p60TNF receptor (p60TNFR) is responsible for proinflammatory signaling, and protein kinase C (PKC) is a candidate for the regulation of p60TNFR. Both TNF-alpha and the PKC-activator phorbol 12-myristate 13-acetate triggered phosphorylation of p60TNFR. Receptor phosphorylation was on both serine and threonine but not on tyrosine residues. The PKC-delta isotype is a candidate enzyme for serine phosphorylation of p60TNFR. Staurosporine and the PKC-delta inhibitor rottlerin inhibited TNF-alpha-triggered serine but not threonine phosphorylation. Serine phosphorylation was associated with receptor desensitization, as inhibition of PKC resulted in enhanced degranulation (elastase release). After neutrophil activation, PKC-delta was the only PKC isotype that associated with p60TNFR within the correct time frame for receptor phosphorylation. In vitro, only PKC-delta, but not the alpha-, betaI-, betaII-, or zeta-isotypes, was competent to phosphorylate the receptor, indicating that p60TNFR is a direct substrate for PKC-delta. These findings suggest a selective role for PKC-delta in negative regulation of the p60TNFR and of TNF-alpha-induced signaling.[Abstract] [Full Text] [Related] [New Search]