These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Significance of acidic sugar chains of apolipoprotein B-100 in cellular metabolism of low-density lipoproteins. Author: Fujioka Y, Taniguchi T, Ishikawa Y, Yokoyama M. Journal: J Lab Clin Med; 2000 Nov; 136(5):355-62. PubMed ID: 11079462. Abstract: We have elucidated the carbohydrate structures of the N-linked sugar chains of human and rabbit apolipoprotein B-100 (apo B-100), which is similar in composition to oligosaccharides (Arch Biochem Biophys 1989;273:197-205, Arteriosclerosis 1990; 10:386-93). We have also shown the negative correlation of the ratio of acidic sugar chains of apo B-100 to the serum cholesterol levels in Watanabe heritable hyperlipidemic rabbits (Atherosclerosis 1992;93:229-35). The acidity of sugar chains is determined by the existence of sialic acid residues at the terminal of oligosaccharides. In the present study we investigated N-linked sugar chains of apo B-100 from patients with coronary artery disease (CAD) who had moderate hypercholesterolemia (less than 400 mg/dL). There was no difference in the structure of their oligosaccharides and the ratio of acidic sugar chains of apo B-100 from CAD patients as compared with that from healthy individuals reported previously. To clarify the role of sialic acid residues in apo B-100 for lipoprotein metabolism, we studied cellular uptake of low-density lipoproteins (LDLs) treated with sialidase (desialylated LDL). Desialylated LDLs were taken up and degraded to a 2-fold greater degree than control LDL by human monocyte-derived macrophages and stimulated cholesterol esterification in these cells. These results indicate that sialic acid residues of apo B- 100 play an important role in cellular uptake and degradation of LDL.[Abstract] [Full Text] [Related] [New Search]