These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A tidal breathing model of the inert gas sinewave technique for inhomogeneous lungs. Author: Whiteley JP, Gavaghan DJ, Hahn CE. Journal: Respir Physiol; 2001; 124(1):65-83. PubMed ID: 11084204. Abstract: The tidal breathing model conservation of mass equations for the sinewave technique have been described for a homogeneous alveolar compartment by Gavaghan and Hahn, 1996 [Gavaghan, D.J., Hahn, C.E.W., 1996. A tidal breathing model of the forced inspired gas sinewave technique. Respir. Physiol. 106, 209-221]. We develop these equations first to a multi-discrete alveolar compartment lung model and then to a lung model with a continuous distribution of volume, ventilation and perfusion. The effect on the output parameters of a multi-compartment model is discussed, and the results are compared to those derived from the conventional continuous-ventilation model. Using the barely soluble gas argon as the tracer gas, an empirical index of alveolar inhomogeneity is presented which uses the end-expired and mixed-expired partial pressures on each breath. This index distinguishes between a narrow unimodal distribution of ventilation-volume, a wide unimodal distribution of ventilation-volume and a bimodal distribution of ventilation-volume. By using Monte Carlo simulations, this index is shown to be stable to experimental error of realistic magnitude.[Abstract] [Full Text] [Related] [New Search]