These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: All natural DR3-type vitamin D response elements show a similar functionality in vitro.
    Author: Toell A, Polly P, Carlberg C.
    Journal: Biochem J; 2000 Dec 01; 352 Pt 2(Pt 2):301-9. PubMed ID: 11085922.
    Abstract:
    The vitamin D(3) receptor (VDR), which is the nuclear receptor for 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], acts primarily as a heterodimer with the retinoid X receptor (RXR) and binds preferentially to directly repeated arrangements of two hexameric binding sites with three spacing nucleotides [DR3-type vitamin D response elements (VDREs)]. In this study, all presently known natural DR3-type VDREs have been compared and classified on the basis of their complex-formation with VDR-RXR heterodimers and their ability to stabilize VDR-RXR heterodimer conformations. Based on the affinity of each VDRE for VDR-RXR heterodimers, the DR3-type VDREs were divided into three classes. The ligand sensitivity of this complex-formation and conformational stabilization was determined to be in the range of 0.1 nM. No significant differences in the 1alpha,25(OH)(2)D(3)-modulated interactions of the DR3-type VDRE-complexed VDR-RXR heterodimer with the co-activator SRC-1 (steroid receptor co-activator-1) or the co-repressor NCoR (nuclear receptor co-repressor) were found. Taken together, the affinity for VDR-RXR heterodimers appears to be the major discriminating parameter between natural DR3-type VDREs. This will not only facilitate further investigation of the principles of DR3-type-VDRE-mediated gene regulation, but also strongly suggests that DR3-type VDREs alone cannot explain the pleiotropic genomic action of 1alpha,25(OH)(2)D(3).
    [Abstract] [Full Text] [Related] [New Search]