These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Author: Lonhienne T, Gerday C, Feller G. Journal: Biochim Biophys Acta; 2000 Nov 30; 1543(1):1-10. PubMed ID: 11087936. Abstract: Basic theoretical and practical aspects of activation parameters are briefly reviewed in the context of cold-adaptation. In order to reduce the error impact inherent to the transition state theory on the absolute values of the free energy (DeltaG(#)), enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation, it is proposed to compare the variation of these parameters between psychrophilic and mesophilic enzymes, namely Delta(DeltaG(#))(p-m), Delta(DeltaH(#))(p-m) and Delta(DeltaS(#))(p-m). Calculation of these parameters from the available literature shows that the main adaptation of psychrophilic enzymes lies in a significant decrease of DeltaH(#), therefore leading to a higher k(cat), especially at low temperatures. Moreover, in all cases including cold-blooded animals, DeltaS(#) exerts an opposite and negative effect on the gain in k(cat). It is argued that the magnitude of this counter-effect of DeltaS(#) can be reduced by keeping some stable domains, while increasing the flexibility of the structures required to improve catalysis at low temperature, as demonstrated in several cold-active enzymes. This enthalpic-entropic balance provides a new approach explaining the two types of conformational stability detected by recent microcalorimetric experiments on psychrophilic enzymes.[Abstract] [Full Text] [Related] [New Search]