These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concerted regulation of steroidogenic acute regulatory gene expression by luteinizing hormone and insulin (or insulin-like growth factor I) in primary cultures of porcine granulosa-luteal cells.
    Author: Sekar N, Lavoie HA, Veldhuis JD.
    Journal: Endocrinology; 2000 Nov; 141(11):3983-92. PubMed ID: 11089528.
    Abstract:
    The steroidogenic acute regulatory (StAR) protein is indispensable for maximal trophic hormone-stimulated steroidogenesis by the adrenal gland, testis, and ovary. Recently, our laboratory developed an in vitro primary culture system of porcine granulosa-luteal cells that retain responsiveness to LH and show LH and insulin [or insulin-like growth factor (IGF-I)] synergy in stimulating StAR messenger RNA accumulation. Here, we examine the mechanisms subserving this LH-insulin (IGF-I) augmentation. We corroborate LH's amplification of insulin as well as IGF-I-stimulated granulosa-luteal cell progesterone and cAMP accumulation (P < 0.001). Insulin or IGF-I elevated LH receptor transcript accumulation, and LH did not alter this effect. To determine the hormonal responsiveness of StAR promoter, truncated regions of the -1423 to +130 bp upstream sequence of the porcine gene were ligated into a firefly luciferase reporter plasmid. Transient transfection of the StAR plasmid containing the full-length porcine 5'-flanking region of StAR (pStAR1423/luc) showed superadditive stimulation by LH and insulin or IGF-I after 24 h. LH, but not insulin or IGF-I alone, stimulated pStAR1423/luc activity. Deletion of the proximal putative steroidogenic factor-1 (-48 to -41) site abolished hormonally driven StAR promoter activity. A stable cAMP analog, 8-bromo-cAMP (1 mM), and insulin/IGF-I also evoked supraadditive StAR promoter expression. To further explore the role of cAMP in LH-insulin (or IGF-I) actions, we cotransfected a Rous sarcoma virus (RSV)-driven minigene encoding the heat-stable inhibitor of the cAMP-dependent protein kinase (RSV/PKI) or a mutant plasmid (RSV/PKImut) along with the pStAR1423/luc promoter construct. Cotransfection of PKI, but not PKImut, with pStAR1423/luc significantly attenuated LH's stimulation of luciferase activity and also reduced the magnitude of the transcriptional amplification exerted by LH and insulin or IGF-I. In corollary analyses of the protein kinase A (PKA) pathway, cotransfection of full-length pStAR1423/luc and a complementary DNA encoding a constitutively activated PKA catalytic subunit elevated basal and insulin (or IGF-I)-stimulated StAR promoter expression. LH and insulin (or IGF-I) also augmented steady state StAR transcript levels, as assessed by homologous RT-PCR, and StAR protein concentrations, as evaluated by Western blotting. Together, these investigations document a significant role for insulin or IGF-I in enhancing LH-stimulated progesterone and cAMP biosynthesis and endogenous StAR message and protein accumulation and in augmenting cAMP-PKA-dependent transcriptional activation of the exogenous StAR promoter.
    [Abstract] [Full Text] [Related] [New Search]