These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated. Author: Winder WW, Holmes BF. Journal: J Appl Physiol (1985); 2000 Dec; 89(6):2430-7. PubMed ID: 11090599. Abstract: Fatty acid oxidation in muscle has been reported to be diminished when insulin and glucose levels are elevated. This study was designed to determine whether activation of AMP-activated protein kinase (AMPK) will prevent inhibitory effects of insulin and glucose on the rate of fatty acid oxidation. Rat hindlimbs were perfused with medium containing 0, 0.3, or 60 nM insulin with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). Glucose uptake was stimulated four- to fivefold by inclusion of insulin in the medium. Insulin attenuated the increase in AMPK caused by AICAR both in perfused hindlimbs and in isolated epitrochlearis muscles. The activation constant for citrate activation of acetyl-CoA carboxylase (ACC) was significantly increased in response to AICAR, and the increase was slightly attenuated if insulin was present in the perfusion medium. Insulin stimulated an increase in malonyl-CoA content of the muscles in the absence of AICAR. Malonyl-CoA was decreased to approximately the same value in AICAR-perfused muscle, regardless of insulin concentration. Muscle glucose 6-phosphate and citrate were significantly increased in response to AICAR and insulin. The rate of palmitate oxidation tended to decrease in response to insulin and in the absence of AICAR. AICAR increased palmitate oxidation to approximately the same level regardless of the insulin concentration or the rate of glucose uptake into the muscle. The rate of palmitate oxidation showed a curvilinear relationship as a function of muscle malonyl-CoA content, with half-maximal inhibition at approximately 0.6 nmol/g. We conclude that AMPK activation can prevent high rates of glucose uptake and glycolytic flux from inhibiting palmitate oxidation in predominantly fast-twitch muscle under these conditions.[Abstract] [Full Text] [Related] [New Search]