These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. Author: Yoon YM, Oh CD, Kang SS, Chun JS. Journal: J Bone Miner Res; 2000 Nov; 15(11):2197-205. PubMed ID: 11092400. Abstract: Chondrogenesis of mesenchymal cells during in vitro micromass culture requires the generation of cyclic adenosine monophosphate (cAMP) and subsequent activation of cAMP-dependent protein kinase A (PKA). In this study, we investigated the regulatory activity of PKA during chondrogenesis of chick limb bud mesenchymal cells. PKA activity was high in 1-day and 2-day cultures, which was followed by a slight decrease in 4-day and 5-day old cultures. Inhibition of PKA blocked chondrogenesis. It did not affect precartilage condensation, but it blocked the progression from the precartilage condensation stage to cartilage nodule formation. The PKA inhibition-induced blockage of chondrogenesis was accompanied by an altered expression of N-cadherin. Although expression of N-cadherin was detected during the early period of chondrogenesis, it became reduced as chondrogenesis proceeded. Still, inhibition of PKA maintained expression of N-cadherin throughout the micromass culture period. The inhibition of PKA did not affect expression of protein kinase C-alpha (PKCalpha), PKCepsilon, PKCdelta, and PKClambda/iota, which are the isoforms expressed in differentiating mesenchymal cells. However, PKA inhibition completely blocked activation of PKCalpha. Because PKC activity regulates N-cadherin expression and chondrogenesis, the PKA-mediated regulation of PKCalpha appears to be responsible for the PKA regulation of N-cadherin expression and chondrogenesis. Taken together, our results suggest that PKA regulates chondrogenesis by activating PKCalpha at the stage of post-precartilage condensation.[Abstract] [Full Text] [Related] [New Search]