These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere--kinetochore complexes. Author: Sugata N, Li S, Earnshaw WC, Yen TJ, Yoda K, Masumoto H, Munekata E, Warburton PE, Todokoro K. Journal: Hum Mol Genet; 2000 Nov 22; 9(19):2919-26. PubMed ID: 11092768. Abstract: Centromere and kinetochore proteins have a pivotal role in centromere structure, kinetochore formation and sister chromatid separation. However, the molecular architecture and the precise dynamic function of the centromere-kinetochore complex during mitosis remain poorly understood. Here we report the isolation and characterization of human CENP-H. Confocal microscopic analyses of HeLa cells with anti-human CENP-H-specific antibody demonstrated that CENP-H colocalizes with inner kinetochore plate proteins CENP-A and CENP-C in both interphase and metaphase. CENP-H was present outside centromeric heterochromatin, where CENP-B is localized, and inside the kinetochore corona, where CENP-E is localized during prometaphase. Furthermore, CENP-H was detected at neocentromeres, but not at inactive centromeres in stable dicentric chromosomes. In vitro binding assays of human CENP-H with centromere-kinetochore proteins suggest that the CENP-H binds to itself and MCAK, but not to CENP-A, CENP-B or CENP-C. CENP-H multimers were observed in cells in which both FLAG-tagged CENP-H and hemagglutinin-tagged CENP-H were expressed. These results suggest that CENP-H multimers localize constitutively to the inner kinetochore plate and play an important fundamental role in organization and function of the active human centromere-kinetochore complex.[Abstract] [Full Text] [Related] [New Search]