These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ribozyme to human TGF-beta1 mRNA inhibits the proliferation of human vascular smooth muscle cells.
    Author: Su JZ, Fukuda N, Hu WY, Kanmatsuse K.
    Journal: Biochem Biophys Res Commun; 2000 Nov 19; 278(2):401-7. PubMed ID: 11097849.
    Abstract:
    Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.
    [Abstract] [Full Text] [Related] [New Search]