These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Internalization and intracellular fate of TCR-CD3 complexes.
    Author: Alcover A, Alarcón B.
    Journal: Crit Rev Immunol; 2000; 20(4):325-46. PubMed ID: 11100805.
    Abstract:
    The number of surface TCR-CD3 complexes is maintained by an equilibrium between the synthesis and secretion of new polypeptides, their internalization, recycling, and degradation. The different subunits of the TCR-CD3 complex do not display the same intracellular trafficking dynamics. Thus, in the absence of stimuli, TCR and zeta chains may be degraded at a higher rate than CD3 subunits, which are mostly recycled. T-cell activation by antigen, anti-TCR-CD3 antibodies, or pharmacological activators of protein kinase C, results in increased TCR-CD3 internalization, followed by the downmodulation of TCR-CD3 surface levels. Once internalized, TCR-CD3 complexes may either enter a recycling pathway or be sorted to lysosomes and degraded. Protein serine kinases and protein tyrosine kinases may influence the internalization and intracellular sorting of TCR-CD3 complexes. In line with these results TCR-CD3 ligands stimulate both TCR-CD3 internalization and degradation, whereas protein kinase C activators stimulate internalization only. Depending on the stimulus applied, internalization motifs from one or several TCR-CD3 subunits mediate endocytic routing of the complex. The involvement of signaling molecules in the intracellular fate of TCR-CD3, the nature and location of sequences for internalization and intracellular sorting, and the role of downregulation in T-cell activation are still the main open questions.
    [Abstract] [Full Text] [Related] [New Search]