These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of glutamic acid decarboxylase-activated T cells with I-Ag7 tetramers.
    Author: Liu CP, Jiang K, Wu CH, Lee WH, Lin WJ.
    Journal: Proc Natl Acad Sci U S A; 2000 Dec 19; 97(26):14596-601. PubMed ID: 11106373.
    Abstract:
    CD4(+) T cells selected by the type 1 diabetes associated class II MHC I-A(g7) molecules play a critical role in the disease process. Multivalent MHC/peptide tetramers have been used to directly detect antigen-specific T cells. Detection of autoantigen-activated CD4(+) T cells with tetramers should be very helpful in the study of the roles of these cells in diabetes. We report here the generation of tetramers of I-A(g7) covalently linked to two glutamic acid decarboxylase (GAD) peptides and the detection of GAD peptide-activated T cells from nonobese diabetic (NOD) mice. The I-A(g7) heterodimers can form stable complexes with a covalently bound GAD peptide and can stimulate antigen specific T cells. Furthermore, I-A(g7)/GAD peptide tetramer can detect most if not all of the antigen-specific CD4(+) T cells from immunized NOD mice. Antigen-specific T cells detected by the tetramers can up-regulate their CD4 expression on the cell surface after being restimulated with the GAD peptides in vitro. In contrast, the tetramers can detect a percentage of T cells in lymph nodes and spleens and T cells infiltrating islets from nonimmunized mice that is not significantly above the background. Therefore, T cells specific for the GAD peptides are present in NOD mice at a frequency too low to be detected, but immunization of NOD mice can facilitate their detection by tetramers.
    [Abstract] [Full Text] [Related] [New Search]