These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of endogenous and exogenous prostaglandin E(2) on interleukin-1 beta-induced cyclooxygenase-2 expression in human airway smooth-muscle cells.
    Author: Bonazzi A, Bolla M, Buccellati C, Hernandez A, Zarini S, Viganò T, Fumagalli F, Viappiani S, Ravasi S, Zannini P, Chiesa G, Folco G, Sala A.
    Journal: Am J Respir Crit Care Med; 2000 Dec; 162(6):2272-7. PubMed ID: 11112151.
    Abstract:
    We studied the effect of endogenous and exogenous prostaglandin E(2) (PGE(2)), a metabolite of arachidonic acid through the cyclooxygenase (COX) pathway, on interleukin (IL)-1 beta-induced COX-2 expression, using primary cultures of human bronchial smooth-muscle cells (HBSMC). Treatment with exogenous PGE(2) resulted in enhanced expression of IL-1 beta-induced COX-2 protein and messenger RNA (mRNA) as compared with the effect of the cytokine per se. Inhibition of PGE(2) production with a nonselective COX inhibitor (flurbiprofen, 10 microM) resulted in a significant reduction in IL-1 beta- induced COX-2 expression, supporting a role of endogenous COX metabolites in the modulation of COX-2 expression. None of the experimental conditions used in the study affected the expression of constitutive cyclooxygenase (COX-1). Treatment with cycloheximide to inhibit translation, and with dexamethasone or actinomycin D to inhibit transcription, linked the effect of PGE(2) to the transcriptional level of COX-2 mRNA rather than to a potential effect on protein and/or mRNA stabilization. PGE(2) increased adenylate cyclase activity in a concentration dependent manner, and forskolin, a direct activator of adenylate cyclase, caused a marked increase in IL-1 beta-dependent COX-2, suggesting the existence of a causal relationship between the two events. The same results were observed with salbutamol, a bronchodilator that acts by increasing cyclic adenosine monophosphate. The effect of PGE(2) on COX-2 expression may contribute to the hypothesized antiinflammatory role of PGE(2) in human airways, providing a self-amplifying loop leading to increased biosynthesis of PGE(2) during an inflammatory event.
    [Abstract] [Full Text] [Related] [New Search]