These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isoproterenol increases CREB phosphorylation and olfactory nerve-evoked potentials in normal and 5-HT-depleted olfactory bulbs in rat pups only at doses that produce odor preference learning.
    Author: Yuan Q, Harley CW, Bruce JC, Darby-King A, McLean JH.
    Journal: Learn Mem; 2000; 7(6):413-21. PubMed ID: 11112800.
    Abstract:
    Norepinephrine (NE) and serotonin (5-HT) are important modulators of early odor preference learning. NE can act as an unconditioned stimulus (UCS), whereas 5-HT facilitates noradrenergic actions. In this study, we examined the phosphorylation of an important transcription factor, cAMP response element binding protein (CREB), which has been implicated in long-term-memory formation (McLean et al. 1999) during NE-induced odor preference learning in normal and olfactory bulb 5-HT-depleted rat pups. We also examined NE modulation of olfactory nerve-evoked field potentials (ON-EFPs) in anesthetized normal and bulbar 5-HT depleted pups. Systemic injection of 2 mg/kg isoproterenol (beta-adrenoceptor agonist) induced odor preference learning, enhanced pCREB expression in the olfactory bulbs at 10 min after odor pairing, and increased ON-EFPs in normal rat pups but not in bulbar 5-HT-depleted rat pups. A dose of 6 mg/kg isoproterenol, which was ineffective in modulating these measures in normal rat pups, induced odor preference learning, enhanced phosphorylated CREB (pCREB) expression, and increased ON-EFPs in bulbar 5-HT-depleted pups. These outcomes suggest that NE and 5-HT promote specific biochemical and electrophysiological changes that may critically underlie odor preference learning.
    [Abstract] [Full Text] [Related] [New Search]