These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms.
    Author: Sogo N, Magid KS, Shaw CA, Webb DJ, Megson IL.
    Journal: Biochem Biophys Res Commun; 2000 Dec 20; 279(2):412-9. PubMed ID: 11118301.
    Abstract:
    Inhibition of platelet activation by nitric oxide (NO) is not exclusively cGMP-dependent. Here, we tested whether inhibition of platelet aggregation by structurally distinct NO donors is mediated by different mechanisms, partly determined by the site of NO release. Glyceryl trinitrate (GTN), sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO), diethylamine diazeniumdiolate (DEA/NO), and a novel S-nitrosothiol, RIG200, were examined in ADP (8 microM)- and collagen (2.5 microgram/ml)-activated human platelet rich plasma. GTN was a poor inhibitor of aggregation whilst the other NO donors inhibited aggregation, irrespective of agonist. These effects were abolished by the NO scavenger, hemoglobin (Hb; 10 microM, P < 0.05, n = 6), except with high concentrations of DEA/NO, when NO concentrations exceeded the capacity of Hb. However, experiments with the soluble guanylate cyclase inhibitor, ODQ (100 microM), indicated that only SNP-mediated inhibition was exclusively cGMP-dependent. Furthermore, the cGMP-independent effects of S-nitrosothiols were distinct from those of DEA/NO, suggesting that different NO-related mediators (e.g., nitrosonium and peroxynitrite, respectively) are responsible for their actions.
    [Abstract] [Full Text] [Related] [New Search]