These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional complementation by wheat eIF2alpha in the yeast GCN2-mediated pathway.
    Author: Chang LY, Yang WY, Roth D.
    Journal: Biochem Biophys Res Commun; 2000 Dec 20; 279(2):468-74. PubMed ID: 11118310.
    Abstract:
    Translational control by specific eIF2alpha phosphorylation on serine 51 has been characterized in all eukaryotes with the significant exception of plants. In order to evaluate the capability of plant eIF2alpha to functionally control translation, the wild type (51S) and a nonphosphorylatable mutant (51A) of wheat eIF2alpha were expressed in a yeast genetic system. Expression of either wheat protein did not handicap growth under conditions that repress the eIF2alpha phosphorylation pathway. However, under conditions that induce specific eIF2alpha phosphorylation only strains expressing wheat 51S were able to grow between 2 and 4 days. Growth was dependent upon activity of yeast eIF2alpha kinase GCN2 and resulted in the increased translation of GCN4. The association between plant eIF2alpha and yeast eIF2B is supported by their specific coimmunoprecipitation from transgenic yeast cells. These data support the similarity among eukaryotic translational initiation processes and strengthen the concept that plants may contain an eIF2alpha phosphorylation pathway.
    [Abstract] [Full Text] [Related] [New Search]