These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of Rat. Author: Saito T, Takahashi K, Nakagawa N, Hosokawa T, Kurasaki M, Yamanoshita O, Yamamoto Y, Sasaki H, Nagashima K, Fujita H. Journal: Biochem Biophys Res Commun; 2000 Dec 20; 279(2):505-11. PubMed ID: 11118316. Abstract: We examined the link of hippocampal Zn to the functional impairments with aging using senescence-accelerated mouse prone 10 (SAMP10) with deficits in learning and memory. Zn in hippocampal mossy fiber pathway was less distributed in aged SAMP10 than that in the age-matched control. Furthermore, expression of Zn transporter 3, ZnT3, which plays to accumulate Zn in synaptic vesicles in the mossy fiber pathway, was markedly reduced in the hippocampal region even in young SAMP10. Moreover, excessive presynaptic release of glutamate as well as glycine and expression of glial fibrillary acidic protein, a marker of neuronal cell injury, were observed in the hippocampus of aged SAMP10 compared to the control. The present results suggest that age-dependent deficiencies of Zn in synaptic vesicles of the mossy fiber pathway induced by low expression of ZnT3 cause glutamatergic excitotoxicity in the hippocampal neurons and the deterioration of learning and memory in SAMP10.[Abstract] [Full Text] [Related] [New Search]