These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roles of phosphate and an enoyl radical in ferritin iron mobilization by 5-aminolevulinic acid. Author: Rocha ME, Ferreira AM, Bechara EJ. Journal: Free Radic Biol Med; 2000 Dec 15; 29(12):1272-9. PubMed ID: 11118817. Abstract: 5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria (AIP) and lead poisoning, undergoes enolization and subsequent iron-catalyzed oxidation at neutral pH. Iron is released from horse spleen ferritin (HoSF) by both ALA-generated O(2)(.-) and enoyl radical (ALA(z.rad)), which amplifies the chain of ALA oxidation (autocatalysis). Iron chelators such as EDTA, ATP, but not citrate, and phosphate accelerate this process and ALA-promoted iron release from HoSF is faster in horse spleen isoferritins containing larger amounts of phosphate in the core. ALA (+0.377 V versus standard hydrogen electrode) is less effective in releasing iron from ferritin than are thioglycollic acid, 6-hydroxydopamine, and N,N,N', N'-tetramethyl-p-phenylenediamine. During electrochemical one electron oxidation of ALA in a nitrogen atmosphere, spin trapping experiments with 3,5-dibromo-4-nitrosobenzenesulfonic acid demonstrated the formation of a spin adduct characterized by a six line signal, indicating a secondary carbon-centered radical and attributed to a resonant ALA&z.rad; radical. Iron is also released in such anaerobic electrochemical oxidations of ALA in the presence of ferritin, suggesting that, in addition to O(2)(*-), ALA&z.rad; can promote iron mobilization from ferritin. Hence, ALA&z.rad; may amplify the metal-catalyzed oxidation of ALA, damaging ALA-accumulating cells and possibly contributing to the symptoms of porphyria.[Abstract] [Full Text] [Related] [New Search]