These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Haemolysis of human and sheep red blood cells in glycerol media: the effect of pH and the role of band 3.
    Author: Zou CG, Agar NS, Jones GL.
    Journal: Comp Biochem Physiol A Mol Integr Physiol; 2000 Nov; 127(3):347-53. PubMed ID: 11118944.
    Abstract:
    Haemolysis of red blood cells (RBC) in glycerol media may be measured spectrophotometrically. The haemolytic process in a rapid phase obeys a first order rate law. The rate constant expresses the rate of haemolysis. To gain a better understanding of the mechanism of haemolysis in glycerol media, the effects of pH and band 3 inhibitors on the rate of haemolysis in human and sheep RBC were observed. Over the pH range used (pH 5.8-10.0), the rate of haemolysis decreased with increase in pH in sheep RBC. By contrast, the rate of haemolysis increased from pH 5.8 to 6.4 and decreased above pH 6.4 in human RBC. The different effects of pH on the rate of haemolysis are due to inhibition of glycerol permeability by H(+) in human RBC but not in sheep RBC. This is supported by the different effects of temperature and Cu(2+) on the rate of haemolysis in human and sheep RBC. We did not observe complete inhibition of haemolysis by the classical band 3 inhibitor, 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Another band 3 inhibitor 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) showed only weak inhibition. Phenylgloxal (PG), another band 3 inhibitor, had no effect whatsoever on the rate of haemolysis. These results indicate that the anion pathway of band 3 is not the preferred route of transport of glycerol in mammalian RBC.
    [Abstract] [Full Text] [Related] [New Search]