These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of bcl-2 on cell death triggered under ATP-depleting conditions.
    Author: Single B, Leist M, Nicotera P.
    Journal: Exp Cell Res; 2001 Jan 01; 262(1):8-16. PubMed ID: 11120600.
    Abstract:
    The intracellular ATP concentration decides on the onset of either apoptosis or necrosis in Jurkat cells exposed to death stimuli. Bcl-2 can block apoptotic demise, which occurs preferably under conditions of high cellular ATP levels. Here, we investigated the effects of Bcl-2 on the necrotic type of cell demise that prevails under conditions of energy loss. ATP levels were modulated by using mitochondrial inhibitors, such as rotenone or S-nitrosoglutathione, in medium either lacking glucose or supplemented with glucose to stimulate glycolytic ATP generation. Under conditions of ATP depletion, staurosporine (STS) induced >90% necrosis in vector control-transfected cells, whereas bcl-2-transfected cells were protected. Thus, the antiapoptotic protein Bcl-2 can reduce the overall amount of cell death in ATP-depleted cells regardless whether it occurs by apoptosis or necrosis. Cytochrome c release, normally preceding STS-induced necrosis, was also inhibited by Bcl-2. However, Bcl-2 did not prevent an initial STS-induced drop of the mitochondrial membrane potential (DeltaPsi(m)). Therefore, the mechanisms whereby Bcl-2 prevents cell death and favors retention of cytochrome c in the mitochondria require neither the maintenance of mitochondrial DeltaPsi nor the maintenance of normal ATP levels.
    [Abstract] [Full Text] [Related] [New Search]