These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Logistic time constant of isometric relaxation force curve of ferret ventricular papillary muscle: reliable index of lusitropism. Author: Mizuno J, Araki J, Mikane T, Mohri S, Imaoka T, Matsubara H, Okuyama H, Kurihara S, Ohe T, Hirakawa M, Suga H. Journal: Jpn J Physiol; 2000 Oct; 50(5):479-87. PubMed ID: 11120914. Abstract: We have found that a logistic function fits the left ventricular isovolumic relaxation pressure curve in the canine excised, cross-circulated heart more precisely than a monoexponential function. On this basis, we have proposed a logistic time constant (tau(L)) as a better index of ventricular isovolumic lusitropism than the conventional monoexponential time constant (tau(E)). We hypothesize in the present study that this tau(L) would also be a better index of myocardial isometric lusitropism than the conventional tau(E). We tested this hypothesis by analyzing the isometric relaxation force curve of 114 twitches of eight ferret isolated right ventricular papillary muscles. The muscle length was changed between 82 and 100% L(max) and extracellular Ca(2+) concentrations ([Ca(2+)](o)) between 0.2 and 8 mmol/l. We found that the logistic function always fitted the isometric relaxation force curve much more precisely than the monoexponential function at any muscle length and [Ca(2+)](o) level. We also found that tau(L) was independent of the choice of the end of isometric relaxation but tau(E) was considerably dependent on it as in ventricular relaxation. These results validated our present hypothesis. We conclude that tau(L) is a more reliable, though still empirical, index of lusitropism than conventional tau(E) in the myocardium as in the ventricle.[Abstract] [Full Text] [Related] [New Search]