These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha i subunits. Author: De Vries L, Fischer T, Tronchère H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG. Journal: Proc Natl Acad Sci U S A; 2000 Dec 19; 97(26):14364-9. PubMed ID: 11121039. Abstract: Activator of G protein signaling 3 (AGS3) is a newly identified protein shown to act at the level of the G protein itself. AGS3 belongs to the GoLoco family of proteins, sharing the 19-aa GoLoco motif that is a Galpha(i/o) binding motif. AGS3 interacts only with members of the Galpha(i/o) subfamily. By surface plasmon resonance, we found that AGS3 binds exclusively to the GDP-bound form of Galpha(i3). In GTPgammaS binding assays, AGS3 behaves as a guanine dissociation inhibitor (GDI), inhibiting the rate of exchange of GDP for GTP by Galpha(i3). AGS3 interacts with both Galpha(i3) and Galpha(o) subunits, but has GDI activity only on Galpha(i3), not on Galpha(o). The fourth GoLoco motif of AGS3 is a major contributor to this activity. AGS3 stabilizes Galpha(i3) in its GDP-bound form, as it inhibits the increase in tryptophan fluorescence of the Galpha(i3)-GDP subunit stimulated by AlF(4)(-). AGS3 is widely expressed as it is detected by immunoblotting in brain, testis, liver, kidney, heart, pancreas, and in PC-12 cells. Several different sizes of the protein are detected. By Northern blotting, AGS3 shows 2.3-kb and 3.5-kb mRNAs in heart and brain, respectively, suggesting tissue-specific alternative splicing. Taken together, our results demonstrate that AGS3 is a GDI. To the best of our knowledge, no other GDI has been described for heterotrimeric G proteins. Inhibition of the Galpha subunit and stimulation of heterotrimeric G protein signaling, presumably by stimulating Gbetagamma, extend the possibilities for modulating signal transduction through heterotrimeric G proteins.[Abstract] [Full Text] [Related] [New Search]