These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein gamma-subunit cDNA.
    Author: Mason MG, Botella JR.
    Journal: Proc Natl Acad Sci U S A; 2000 Dec 19; 97(26):14784-8. PubMed ID: 11121078.
    Abstract:
    Heterotrimeric G proteins consist of three subunits (alpha, beta, and gamma). alpha- and beta- subunits have been previously cloned in plants, but the gamma-subunit has remained elusive. To isolate the gamma-subunit of a plant heterotrimeric G protein an Arabidopsis thaliana yeast two-hybrid library was screened by using a tobacco G-beta-subunit as the bait protein. One positive clone (AGG1) was isolated several times; it displays significant homology to the conserved domains of mammalian gamma-subunits. The predicted AGG1 protein sequence contains all of the typical characteristics of mammalian gamma-subunits such as small size (98 amino acids, 10.8 kDa), presence of a C-terminal CAAX box to direct isoprenyl modification, and an N-terminal alpha-helix region capable of forming a coiled-coil interaction with the beta-subunit. Northern and Southern analyses showed that AGG1 is a single-copy gene in Arabidopsis with a similar expression pattern to the Arabidopsis beta-subunit, AGB1 [Weiss, C. A., Garnaat, C. W., Mukai, K., Hu, Y. & Ma, H. (1994) Proc. Natl. Acad. Sci. USA 91, 9554-9558]. By using the yeast two-hybrid system, we show that AGG1 strongly interacts with tobacco and Arabidopsis beta-subunits. The in vivo results have been confirmed by using in vitro methods to prove the interaction between AGG1 and the Arabidopsis beta-subunit. As previously observed in mammalian systems, both the coiled-coil domain and the WD repeat regions of the beta-subunit are essential for AGG1 interaction. Also in agreement with previous observations, the removal of the N-terminal alpha-helix of the AGG1 greatly reduces but does not completely block the interaction.
    [Abstract] [Full Text] [Related] [New Search]