These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Competition between the replication initiator DnaA and the sequestration factor SeqA for binding to the hemimethylated chromosomal origin of E. coli in vitro.
    Author: Taghbalout A, Landoulsi A, Kern R, Yamazoe M, Hiraga S, Holland B, Kohiyama M, Malki A.
    Journal: Genes Cells; 2000 Nov; 5(11):873-884. PubMed ID: 11122375.
    Abstract:
    BACKGROUND: Following replication initiation, the replication origin (oriC) in Escherichia coli enters a hemimethylated state at Dam methylation sites which are recognized by the SeqA protein. SeqA binds preferentially to hemimethylated GATC sequences of DNA in vitro. SeqA is essential for the synchronous initiation of chromosome replication from oriC copies in vivo. RESULTS: We show that: (i) purified SeqA binds AT-rich and 13-mers regions and two DnaA boxes, R1 and M, of hemimethylated oriC. (ii) SeqA inhibits the in vitro replication of a hemimethylated oriC plasmid more efficiently than the fully methylated, (iii) SeqA inhibits competitive binding of DnaA protein to the regions of the hemimethylated oriC plasmid, explaining the mechanism of its inhibitory effect. The inhibition of DnaA binding by SeqA also occurs efficiently on a small hemimethylated oriC fragment containing both R1 and M DnaA boxes, but not the 13-mer region. CONCLUSIONS: SeqA binds strongly the long region from the AT-rich region to the M DnaA box of the hemimethylated oriC DNA and releases DnaA molecules from the long region.
    [Abstract] [Full Text] [Related] [New Search]