These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IL-7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice.
    Author: Tsark EC, Dao MA, Wang X, Weinberg K, Nolta JA.
    Journal: J Immunol; 2001 Jan 01; 166(1):170-81. PubMed ID: 11123290.
    Abstract:
    The beige/nude/xid/human (bnx/hu) model of human hematopoiesis provides a unique opportunity to study extrathymic human T lymphocyte development in an in vivo system. Purified human hematopoietic stem cells develop into mature T lymphocytes and immature progenitors in the bone marrow of athymic bnx mice. The human T cells are all TCR alpha beta(+) and display a restricted TCRV beta repertoire. In the current studies, we examined the effects of systemic human IL-7 (huIL-7) administration on the phenotype and the activation status of the bnx/hu T cells. In the majority of the mice that did not have huIL-7 administration, a higher frequency of human CD3(+)/CD8(+) than CD3(+)/CD4(+) T cells developed in the bone marrow. This phenomenon is also frequently observed in human bone marrow transplant recipients. Extremely low levels of IL-2 were expressed by human CD3(+) cells isolated from these mice, in response to PMA plus ionomycin and to CD3 and CD28 cross-linking. IL-4 was not expressed by cells exposed to either stimulus, demonstrating a profound inability of the bnx/hu T cells to produce this cytokine. Systemic production of huIL-7 from engineered stromal cells transplanted into the mice increased the human CD4 to CD8 ratios, and increased the ratio of memory to naive CD4(+) and CD8(+) T cells. The human CD3(+) cells recovered from mice that had systemic huIL-7 and equivalent numbers of CD3(+)/CD4(+) and CD3(+)/CD8(+) cells in the marrow were still unable to produce IL-4 in response to any condition tested, but were capable of normal levels of IL-2 production following stimulation.
    [Abstract] [Full Text] [Related] [New Search]