These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion.
    Author: d'Almeida MS, Jagger J, Duggan M, White M, Ellis C, Chin-Yee IH.
    Journal: Transfus Med; 2000 Dec; 10(4):291-303. PubMed ID: 11123813.
    Abstract:
    Animal models of transfusion are employed in many research areas yet little is known about the storage-related changes occurring in the blood used in these studies. This study assessed storage-related changes in red blood cell (RBC) biochemistry, function and membrane deformability in rat and human packed RBCs when stored in CPDA-1 at 4 degrees C over a 4-week period. Human blood from five volunteers and five bags of rat RBC concentrates (five donor rats per bag) were collected and stored at 4 degrees C. RBC function was assessed by post-transfusion viability and the ability to regenerate adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) when treated with a rejuvenation solution. Membrane deformability was determined by a micropipette aspiration technique. ATP in rat RBCs declined more rapidly than human RBCs; after 1 week rat ATP fell to the same level as human cells after 4 weeks of storage (rat, 2.2 +/- 0.2 micromol g(-1) Hb; human, 2.5 +/- 0.3 micromol g(-1) Hb). Baseline DPG concentrations were similar in rat and human RBCs (16.2 +/- 2.3 micromol g(-1) Hb and 13.7 +/- 2.4 micromol g(-1) Hb) and declined very rapidly in both species. Human RBCs fully regenerated ATP and DPG when treated with a rejuvenation solution after 4 weeks of storage. Rat RBCs regenerated ATP but not DPG. Post-transfusion viability in rat cells was 79%, 26% and 5% after 1, 2 and 4 weeks of storage, respectively. In rats, decreased membrane deformability became significant (- 54%) after 7 days. Human RBC deformability decreased significantly by 34% after 4 weeks of storage. The rejuvenation solution restored RBC deformability to control levels in both species. Our results indicate that rat RBCs stored for 1 week in CPDA-1 develop a storage lesion similar to that of human RBCs stored for 4 weeks and underscores significant species-specific differences in the structure and metabolism of these cells.
    [Abstract] [Full Text] [Related] [New Search]