These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low- and high-density lipoprotein metabolism in HepG2 cells expressing various levels of apolipoprotein E. Author: Charpentier D, Tremblay C, Rassart E, Rhainds D, Auger A, Milne RW, Brissette L. Journal: Biochemistry; 2000 Dec 26; 39(51):16084-91. PubMed ID: 11123936. Abstract: To determine the importance of hepatic apolipoprotein (apo) E in lipoprotein metabolism, HepG2 cells were transfected with a constitutive expression vector (pRc/CMV) containing either the complete or the first 474 base pairs of the human apoE cDNA inserted in an antisense orientation, for apoE gene inactivation, or the full-length human apoE cDNA inserted in a sense orientation for overexpression of apoE. Stable transformants were obtained that expressed 15, 24, 226, and 287% the apoE level of control HepG2 cells. The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein-3 (HDL(3)), two lipoprotein classes following both holoparticle and cholesteryl esters (CE)-selective uptake pathways, was compared between all these cells. LDL-protein degradation, an indicator of the holoparticle uptake, was greater in low apoE expressing cells than in control or high expressing cells, while HDL(3)-protein degradation paralleled the apoE levels of the cells (r(2) = 0.989). LDL- and HDL(3)-protein association was higher in low apoE expressing cells compared to control cells. In opposition, LDL- and HDL(3)-CE association was not different from control cells in low apoE expressing cells but rose in high apoE expressing cells. In consequence, the CE-selective uptake (CE/protein association ratio) was positively correlated with the level of apoE expression in all cells for both LDL (r(2) = 0.977) and HDL(3) (r(2) = 0.998). We also show that, although in normal and low apoE expressor cells, 92% of LDL- and 80% HDL(3)-CE hydrolysis is sensitive to chloroquine suggesting a pathway linked to lysosomes for both lipoproteins, cells overexpressing apoE lost 60% of chloroquine-sensitive HDL(3)-CE hydrolysis without affecting that of LDL-CE. Thus, the level of apoE expression in HepG2 cells determines the fate of LDL and HDL(3).[Abstract] [Full Text] [Related] [New Search]