These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recovery of atrazine, bromacil, chlorpyrifos, and metolachlor from water samples after concentration on solid-phase extraction disks: interlaboratory study. Author: Mueller TC, Senseman SA, Wauchope RD, Clegg C, Young RW, Southwick LM, Riley MB, Moye HA, Dumas JA, Mersie W, Mattice JD, Leidy RB. Journal: J AOAC Int; 2000; 83(6):1327-33. PubMed ID: 11128134. Abstract: An interlaboratory comparison was conducted in 1997 and 1998 to examine the feasibility of using C18 solid-phase extraction disks (Empore) to simultaneously determine the herbicides atrazine, bromacil, and metolachlor and the insecticide chlorpyrifos in water samples. A common fortification source and sample processing procedure were used to minimize variation in initial concentrations and operator inconsistencies. The protocol consisted of paired laboratories in different locations coordinating their activities and shipping fortified water samples (deionized or local surface water) or Empore disks on which the pesticides had been retained and then quantitating the analytes by a variety of gas chromatographic methods. Average recoveries from all laboratories were >80% for atrazine, bromacil, and metolachlor, and >70% for chlorpyrifos. Detection of bromacil was unachievable at some locations because of chromatographic problems. Shipping samples between cooperating laboratories did not affect the recovery of atrazine, chlorpyrifos, or metolachlor in either matrix. Recoveries tended to be higher from disks shipped to cooperating laboratories compared with those from fortified water. Shipping disks eliminated many problems associated with the shipment of water samples, such as bottle breakage, higher shipping cost, and possible pesticide degradation. Recoveries of bromacil and metolachlor were lower from fortified surface water samples than from fortified deionized water samples. This collaborative research demonstrated that pesticides in water samples can be concentrated on solid-phase extraction disks at one location and quantitated under diverse analytical conditions at another location. The extraction efficiencies of the disks were comparable with or better than the recoveries obtained from the shipped water samples, and the problems associated with shipping water samples were eliminated by using the disks.[Abstract] [Full Text] [Related] [New Search]