These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of peripheral administration of a novel selective antagonist for prostaglandin E receptor subtype EP(1), ONO-8711, in a rat model of postoperative pain.
    Author: Omote K, Kawamata T, Nakayama Y, Kawamata M, Hazama K, Namiki A.
    Journal: Anesth Analg; 2001 Jan; 92(1):233-8. PubMed ID: 11133634.
    Abstract:
    UNLABELLED: Mechanically evoked pain, also known as incident pain, induced by coughing or deep breathing after surgery leads to potentially devastating consequences. It is generally thought that the prostaglandin receptor- (especially, the receptor for prostaglandin E(2), EP receptor) mediated sensitization of sensory nerve fibers is a key contributor to the generation of hyperalgesia. We examined whether a peripherally administered novel selective EP(1) antagonist, ONO-8711, would be a potential analgesic for incision-induced mechanical hyperalgesia. We used a rat model of postoperative pain introduced by Brennan et al. (1). Withdrawal thresholds to punctate stimulation and response frequencies to nonpunctate mechanical stimulation were determined by using von Frey filaments applied adjacent to the wound and directly to the incision site of the hind paw, respectively. Mechanical hyperalgesia to punctate and nonpunctate stimuli was observed 2 and 24 h after the incision. ONO-8711 (2, 10, or 50 microg) or saline was administered subcutaneously into the hind paw on the ipsilateral side to the incision. ONO-8711 significantly (P < 0.01) increased the withdrawal thresholds to punctate mechanical stimulation and significantly (P < 0.01) decreased the response frequencies to nonpunctate mechanical stimulation in a dose- and time-dependent manner 2 and 24 h after the incision. We conclude that EP(1) receptor-mediated sensitization of sensory nerve fibers may contribute to the generation of mechanical hyperalgesia produced by incisional surgery, and that the EP(1) receptor antagonist ONO-8711 may be an option for treatment of postoperative pain, especially incident pain. IMPLICATIONS: The peripheral administration of an antagonist for EP(1) receptor that is a subtype of prostaglandin E receptors can inhibit the mechanical hyperalgesia induced by a surgical incision.
    [Abstract] [Full Text] [Related] [New Search]