These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons.
    Author: Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M.
    Journal: J Comp Neurol; 2001 Feb 05; 430(2):250-63. PubMed ID: 11135260.
    Abstract:
    Trigeminal ganglion neurons comprise three main cell body-size types. This cell size heterogeneity provides an excellent neuronal model to study the cell size-dependent organization and dynamics of the nucleoli, Cajal (coiled) bodies (CBs), and nuclear speckles of pre-mRNA splicing factors, nuclear structures that play a key role in the normal neuronal physiology. We have analyzed the number of nucleoli and CBs and the structural and molecular organization of CBs and nuclear speckles in the three neuronal types by using immunofluorescence with antibodies that recognize nucleoli (fibrillarin), CBs (coilin), and nuclear speckles (snRNPs), confocal microscopy, and electron microscopy. Whereas the mean number of nucleoli per neuron decreases as a function of cell size, the number of CBs per cell significantly increases in large neurons in comparison with the small ones. In addition, large neurons have a higher proportion of CBs associated with the nucleolus. In all neuronal types, CBs concentrate coilin, fibrillarin, snRNPs, and the survival motor neuron protein (SMN). Immunostaining for snRNPs shows small speckle domains and extensive areas of diffuse nucleoplasmic signal in large neurons, in contrast with the large nuclear speckles found in small neurons. Furthermore, flow cytometric analysis shows that all neurons are in the range of diploid cells. These findings indicate that the fusion behavior of nucleoli, the formation of CBs and their relationships with the nucleolus, as well as the compartmentalization of the pre-mRNA splicing machinery, is related to cell body size in the trigeminal ganglion neurons. Because transcriptional activity is a basic determinant mechanism of cell size in diploid cells, we suggest that our findings reflect a distinct transcription-dependent organization of the nucleolus and splicing machinery in the three cell types of trigeminal ganglion neurons.
    [Abstract] [Full Text] [Related] [New Search]