These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peroxisomal bifunctional enzyme binds and activates the activation function-1 region of the peroxisome proliferator-activated receptor alpha.
    Author: Juge-Aubry CE, Kuenzli S, Sanchez JC, Hochstrasser D, Meier CA.
    Journal: Biochem J; 2001 Jan 15; 353(Pt 2):253-8. PubMed ID: 11139388.
    Abstract:
    The transcriptional activity of peroxisome proliferator-activated receptors (PPARs), and of nuclear hormone receptors in general, is subject to modulation by cofactors. However, most currently known co-activating proteins interact in a ligand-dependent manner with the C-terminal ligand-regulated activation function (AF)-2 domain of nuclear receptors. Since PPARalpha exhibits a strong constitutive transactivating function contained within an N-terminal AF-1 region, it can be speculated that a different set of cofactors might interact with this region of PPARs. An affinity purification approach was used to identify the peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (bifunctional enzyme, BFE) as a protein which strongly and specifically interacted with the N-terminal 92 amino acids of PPARalpha. Protein-protein interaction assays with the cloned BFE confirmed this interaction, which could be mapped to amino acids 307-514 of the BFE and the N-terminal 70 amino acids of PPARalpha. Moreover, transient transfection experiments in hepatoma cells revealed a 2.2-fold increase in the basal and ligand-stimulated transcriptional activity of PPARalpha in the presence of BFE. This stimulatory effect is preferentially observed for the PPARalpha isoform and it is significantly stronger (4.8-fold) in non-hepatic cells, which presumably express lower levels of endogenous BFE. Hence, the BFE represents the first known cofactor capable of activating the AF-1 domain of PPAR without requiring additional regions of this receptor. These data are compatible with a model whereby the PPAR-regulated BFE is able to modulate its own expression through an enhancement of the activity of PPARalpha, representing a novel peroxisomal-nuclear feed-forward regulatory loop.
    [Abstract] [Full Text] [Related] [New Search]