These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents.
    Author: Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG.
    Journal: Nature; ; 408(6815):990-4. PubMed ID: 11140688.
    Abstract:
    The human kidney is composed of roughly 1.2-million renal tubules that must maintain their tubular structure to function properly. In autosomal dominant polycystic kidney disease (ADPKD) cysts develop from renal tubules and enlarge independently, in a process that ultimately causes renal failure in 50% of affected individuals. Mutations in either PKD1 or PKD2 are associated with ADPKD but the function of these genes is unknown. PKD1 is thought to encode a membrane protein, polycystin-1, involved in cell-cell or cell-matrix interactions, whereas the PKD2 gene product, polycystin-2, is thought to be a channel protein. Here we show that polycystin-1 and -2 interact to produce new calcium-permeable non-selective cation currents. Neither polycystin-1 nor -2 alone is capable of producing currents. Moreover, disease-associated mutant forms of either polycystin protein that are incapable of heterodimerization do not result in new channel activity. We also show that polycystin-2 is localized in the cell in the absence of polycystin-1, but is translocated to the plasma membrane in its presence. Thus, polycystin-1 and -2 co-assemble at the plasma membrane to produce a new channel and to regulate renal tubular morphology and function.
    [Abstract] [Full Text] [Related] [New Search]