These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The unique tryptophan residue of the vitamin D receptor is critical for ligand binding and transcriptional activation. Author: Solomon C, Macoritto M, Gao XL, White JH, Kremer R. Journal: J Bone Miner Res; 2001 Jan; 16(1):39-45. PubMed ID: 11149488. Abstract: The human vitamin D receptor (hVDR) is a member of the nuclear receptor superfamily of transcriptional regulators. Here we show that tryptophan 286 of the hVDR is critical for ligand binding and transactivation of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] target genes. Two mutants of the hVDR were produced, W286A and W286F, in which the tryptophan was replaced with an alanine or a phenylalanine, respectively. The W286A mutant did not bind 1,25(OH)2D3, interact with steroid receptor coactivator 1 (SRC-1) in vitro, or activate transcription. Moreover, the W286A receptor did not heterodimerize in a ligand-dependent manner with the human retinoid X receptor alpha (hRXRalpha). Although the W286F receptor heterodimerized with hRXRalpha, interacted with SRC-1, and bound 1,25(OH)2D3, its capacity to transactivate was attenuated severely. Thus, tryptophan 286 of hVDR plays an important role in specific 1,25(OH)2D3 ligand interaction and subsequently in hVDR/RXR interaction, SRC-1 binding, and ligand-dependent transactivation of 1,25(OH)2D3 target genes. These results identify the first amino acid that is absolutely required for ligand binding in the VDR and further define the structure-function relationship of 1,25(OH)2D3 interaction with its receptor.[Abstract] [Full Text] [Related] [New Search]