These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bcl-X(L)-caspase-9 interactions in the developing nervous system: evidence for multiple death pathways.
    Author: Zaidi AU, D'Sa-Eipper C, Brenner J, Kuida K, Zheng TS, Flavell RA, Rakic P, Roth KA.
    Journal: J Neurosci; 2001 Jan 01; 21(1):169-75. PubMed ID: 11150333.
    Abstract:
    Programmed cell death is critical for normal nervous system development and is regulated by Bcl-2 and Caspase family members. Targeted disruption of bcl-x(L), an antiapoptotic bcl-2 gene family member, causes massive death of immature neurons in the developing nervous system whereas disruption of caspase-9, a proapoptotic caspase gene family member, leads to decreased neuronal apoptosis and neurodevelopmental abnormalities. To determine whether Bcl-X(L) and Caspase-9 interact in an obligate pathway of neuronal apoptosis, bcl-x/caspase-9 double homozygous mutants were generated. The increased apoptosis of immature neurons observed in Bcl-X(L)-deficient embryos was completely prevented by concomitant Caspase-9 deficiency. In contrast, bcl-x(-/-)/caspase-9(-/-) embryonic mice exhibited an expanded ventricular zone and neuronal malformations identical to that observed in mice lacking only Caspase-9. These results indicate both epistatic and independent actions of Bcl-X(L) and Caspase-9 in neuronal programmed cell death. To examine Bcl-2 and Caspase family-dependent apoptotic pathways in telencephalic neurons, we compared the effects of cytosine arabinoside (AraC), a known neuronal apoptosis inducer, on wild-type, Bcl-X(L)-, Bax-, Caspase-9-, Caspase-3-, and p53-deficient telencephalic neurons in vitro. AraC caused extensive apoptosis of wild-type and Bcl-X(L)-deficient neurons. p53- and Bax-deficient neurons showed marked protection from AraC-induced death, whereas Caspase-9- and Caspase-3-deficient neurons showed minimal or no protection, respectively. These findings contrast with our previous investigation of AraC-induced apoptosis of telencephalic neural precursor cells in which death was completely blocked by p53 or Caspase-9 deficiency but not Bax deficiency. In total, these results indicate a transition from Caspase-9- to Bax- and Bcl-X(L)-mediated neuronal apoptosis.
    [Abstract] [Full Text] [Related] [New Search]