These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrasting antioxidant and cytotoxic effects of peroxiredoxin I and II in PC12 and NIH3T3 cells.
    Author: Simzar S, Ellyin R, Shau H, Sarafian TA.
    Journal: Neurochem Res; 2000 Dec; 25(12):1613-21. PubMed ID: 11152390.
    Abstract:
    We examined the impact of peroxiredoxin-I (Prx-I) and peroxiredoxin-II (Prx-II) stable transduction on oxidative stress in PC12 neurons and NIH3T3 fibroblasts and found variability depending on cell type and Prx subtype. In PC12 neurons, Prx-II suppressed reactive oxygen species (ROS) generation by 36% (p < 0.01) relative to vector-infected control cells. However, in NIH3T3 fibroblasts, Prx-II overexpression resulted in a 97% (p < 0.01) increase in ROS generation. Prx-I transduction elevated ROS generation in PC12 cells. The effect of Prx-I on PC12 cells was potentiated in the presence of menadione, and suppressed by an inhibitor of nitric oxide synthetase. Prx-II transduction resulted in 25-35% lower levels of glutathione (GSH) in both cell types, while Prx-I transduction increased GSH levels in neurons and decreased GSH and caspase-3 activity in fibroblasts. Prx-I and Prx-II also had differing effects on cell viability. These results suggest that Prx-I and Prx-II can either increase or decrease intracellular oxidative stress depending on cell type or experimental conditions, particularly conditions affecting nitric oxide levels.
    [Abstract] [Full Text] [Related] [New Search]