These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abnormalities in cerebellar Purkinje cells in the novel ataxic mutant mouse, pogo.
    Author: Jeong YG, Hyun BH, Hawkes R.
    Journal: Brain Res Dev Brain Res; 2000 Dec 29; 125(1-2):61-7. PubMed ID: 11154761.
    Abstract:
    The pogo mouse is a novel neurological mutant, which was discovered, in an inbred strain (KJR/MsKist) derived from a Korean wild mouse. The pathological manifestations include difficulty in maintaining normal posture, failures of interlimb coordination and the inability to walk straight. The ataxia is first apparent from about 2 weeks of age and progresses throughout life. The mutation is inherited as an autosomal recessive trait. In this report, we describe abnormalities in the pogo/pogo cerebellum. Nissl staining shows that the pogo/pogo cerebellum is normal in size and lobulation. Similarly, immunocytochemical staining for a granule cell marker, 10B5, shows no differences in the thickness of the granular layer between pogo/pogo homozygote and pogo/+ heterozygote littermate controls. By using anti-parvalbumin immunocytochemistry, the cells of molecular layer of the pogo/pogo cerebellum also appeared similar in distribution as compared to normal wild type mouse. In anti-neurofilament immunocytochemistry, the basket cells axons of the pogo/pogo cerebellum appeared normal. Purkinje cell abnormalities were identified by using anti-calbindin D immunocytochemistry. In 120-day-old pogo/pogo mutant mice there was a loss of Purkinje cells throughout the cerebellar vermis. Furthermore, the somata and dendrites were extensively vacuolated in the pogo/pogo Purkinje cells and the primary dendrites were frequently swollen. Focal axonal swellings were commonly observed in the Purkinje cell axons of pogo/pogo mutant mice as they traversed the granular layer. These data suggest that the progressive ataxia seen in pogo mice may be due to a failure of normal Purkinje cell activity.
    [Abstract] [Full Text] [Related] [New Search]