These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of topoisomerase IIalpha expression by transforming growth factor-beta1 is abrogated by the papillomavirus E7 protein. Author: Satterwhite DJ, White RL, Matsunami N, Neufeld KL. Journal: Cancer Res; 2000 Dec 15; 60(24):6989-94. PubMed ID: 11156401. Abstract: Transforming growth factor-beta (TGF-beta) protects normal cells from etoposide-induced cell death, yet the mechanism has remained speculative. Studies have shown that etoposide modifies the activity of the topoisomerase IIalpha (topo IIalpha) enzyme, thereby causing DNA damage and inducing cell death. Expression of topo IIalpha is necessary for etoposide-induced cell death, and peak expression of topo IIalpha normally occurs during the G2 phase of the cell cycle. We predicted that by arresting growth in the G1 phase, TGF-beta1 would prevent the induction of topo IIalpha expression that normally occurs subsequent to the G1-S transition, thereby protecting cells from etoposide-induced cell death. Accordingly, we hypothesized that the inhibition of topo IIalpha expression by TGF-beta1 would be dependent on the ability of TGF-beta1 to arrest cell cycle progression in G1. Using mink lung epithelial cells (MvlLu), we found that TGF-beta1 decreases topo IIalpha mRNA expression, and the decrease occurs as cells begin to accumulate in the G1 phase of the cell cycle. Topo IIalpha protein expression decreases subsequent to the fall in mRNA expression. In contrast, topo IIalpha expression is not affected by TGF-beta1 in cells that fail to undergo G1 arrest because of inactivation of the retinoblastoma tumor suppressor protein (pRb) by the papillomavirus type 16 E7 protein. Our studies suggest that inhibition of topo IIalpha by TGF-beta1 is the principal mechanism that protects mink lung epithelial cells (Mv1Lu) from etoposide-induced toxicity. Furthermore, the inhibition of topo IIalpha protein expression by TGF-beta1 is dependent on pRb-mediated cell cycle arrest, suggesting that TGF-beta1 will not reduce the sensitivity of pRb-deficient cancers to etoposide.[Abstract] [Full Text] [Related] [New Search]