These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Altered cardiac sarcoplasmic reticulum function of intact myocytes of rat ventricle during metabolic inhibition. Author: Overend CL, Eisner DA, O'Neill SC. Journal: Circ Res; 2001 Feb 02; 88(2):181-7. PubMed ID: 11157670. Abstract: Changes in the behavior of the sarcoplasmic reticulum (SR) in rat ventricular myocytes were investigated under conditions of metabolic inhibition using laser-scanning confocal microscopy to measure intracellular Ca(2+) and the perforated patch-clamp technique to measure SR Ca(2+) content. Metabolic inhibition had several effects on SR function, including reduced frequency of spontaneous releases of Ca(2+) (sparks and waves of Ca(2+)-induced Ca(2+) release), increased SR Ca(2+) content (79.4+/-5.7 to 115.2+/-6.6 micromol/L cell volume [mean+/-SEM; P:<0.001]), and, after a wave of Ca(2+) release, slower reuptake of Ca(2+) into the SR (rate constant of fall of Ca(2+) reduced from 8.5+/-1.1 s(-)(1) in control to 5.2+/-0.4 s(-)(1) in metabolic inhibition [P:<0.01]). Inhibition of L-type Ca(2+) channels with Cd(2+) (100 micromol/L) did not reproduce the effects of metabolic inhibition on spontaneous Ca(2+) sparks. These results are evidence of inhibition of both Ca(2+) release and reuptake mechanisms. Reduced frequency of release could be attributable to either of these effects, but the increased SR Ca(2+) content at the time of reduced frequency of spontaneous release of Ca(2+) shows that the dominant effect of metabolic inhibition is to inhibit release of Ca(2+) from the SR, allowing the accumulation of greater than normal amounts of Ca(2+). In the context of ischemia, this extra accumulation of Ca(2+) would present a risk of potentially arrhythmogenic, spontaneous release of Ca(2+) on reperfusion of the tissue.[Abstract] [Full Text] [Related] [New Search]