These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20.
    Author: Caprioli J, Bettinaglio P, Zipfel PF, Amadei B, Daina E, Gamba S, Skerka C, Marziliano N, Remuzzi G, Noris M.
    Journal: J Am Soc Nephrol; 2001 Feb; 12(2):297-307. PubMed ID: 11158219.
    Abstract:
    The aim of the present study was to clarify whether factor H mutations were involved in genetic predisposition to hemolytic uremic syndrome, by performing linkage and mutation studies in a large number of patients from those referred to the Italian Registry for Recurrent and Familial HUS/TTP. PCR and Western blot analyses were conducted to characterize the biochemical consequences of the mutations. Five mutations in the factor H gene were identified. Three, identified in two families and in a sporadic case, are heterozygous point mutations within the most C-terminal short consensus repeat 20 (SCR20) of factor H, resulting in single amino acid substitutions. The other two mutations introduce premature stop codons that interrupt the translation of factor H. A heterozygous nonsense mutation was identified in SCR8 in one family, and a homozygous 24-bp deletion within SCR20 was identified in a Bedouin family with a recessive mode of inheritance. Reverse transcription-PCR analysis of cDNA from peripheral blood leukocytes from the Bedouin family showed that the deletion lowered factor H mRNA levels. Although heterozygous mutations were associated with normal factor H levels and incomplete penetrance of the disease, the homozygous mutation in the Bedouin family resulted in severe reduction of factor H levels accompanied by very early disease onset. These data provide compelling molecular evidence that genetically determined deficiencies in factor H are involved in both autosomal-dominant and autosomal-recessive hemolytic uremic syndrome and identify SCR20 as a hot spot for mutations in the disease. The mutations identified here give an important hint to the relevance of the C-terminus of factor H in the control of the alternative complement activation pathway.
    [Abstract] [Full Text] [Related] [New Search]